Automated Helm w
Chart Testing with
Bats HELM

~A

Fredrik Steen

Fredrik Steen

Director of Software Engineering
Varnish Software

Mail: fredrik.steen@varnish-software.com
MLinkedIn: fredriksteen
) GitHub: stone

"Blog": https://tty.se/

Linux and open source user/developer since the mid 90s

Psy-trance DJ, Beekeeper, hydroponics,
electronics/homeautoumation geek

Automated Helm Chart Testing with Bats

mailto:fredrik.steen@varnish-software.com
https://linkedin.com/in/fredriksteen/
file:///foo/github.com/stone
https://tty.se/

Agenda Items

e \What is Helm and Helm Charts?

e The Good, the Bad and the Ugly (Some ranting)

Challenges for a product software company
Why Test Helm Charts?

Testing Helm Charts

Bats Crash Course

Best Practices

Summary
e Q&A

Automated Helm Chart Testing with Bats

What is Helm and Helm Charts?

Helm is a tool for managing Kubernetes applications. Helm uses a packaging
format called charts. Charts are collections of pre-configured Kubernetes

resources.

 Helm is a package manager for Kubernetes

e Helm charts are collections of files that describe a related set of Kubernetes
resources

Helm manages Kubernetes applications defined as charts

Charts can be versioned and shared

Charts are stored in chart repositories

e Charts can be installed, upgraded, and deleted using Helm commands

Automated Helm Chart Testing with Bats

Example of using helm to install Varnish Cache

$ vim values.yaml

$ helm install myvarnish oci://registry-1.docker.io/varnish/varnish-cache
Pulled: registry-1.docker.io/varnish/varnish-cache:1.1.1

NAME: myvarnish

LAST DEPLOYED: Fri May 16 10:06:48 2025

STATUS: deployed

REVISION: 1

$ helm upgrade -f values.yaml myvarnish oci://registry-1.docker.io/varnish/varnish-cache
Release "myvarnish" has been upgraded. Happy Helming!

NAME: myvarnish

LAST DEPLOYED: Fri May 16 10:07:08 2025

STATUS: deployed

REVISION: 2

$ helm rollback myvarnish
$ helm uninstall myvarnish

Automated Helm Chart Testing with Bats

But is it really that good?

The Good

e Package once, deploy anywhere: lets you wrap up a whole app with sensible
defaults.

e Customizability (values.yaml): You get one file to rule them all. Change ports?
Image tags? TLS? It's all in there.

e Rollback-friendly: Helm tracks releases like Git does commits. One bad
deployment? Just roll it back.

e Ecosystem-rich: There's a chart for everything
e Repository support: You can host your own chart repositories or use public ones.

o« Community support: Helm has a large and active community, making it easy to find
help and resources.

Automated Helm Chart Testing with Bats

The Bad

e Template hell: Templates are written in Go's templating language, You end up
nesting curly braces like this:

{{- 1f .values.service.enabled }} port: {{ .Values.service.port }} {{-
end }}

e values.yaml becomes a jungle: As your chart grows, values.yaml becomes a
sprawling monster.

e \Want to change one thing, prepare to wade through 4 layers of defaults,
conditionals, and overrides.

e Debugging a Helm chart is like trying to guess what your YAML will look like after
rendering.

Automated Helm Chart Testing with Bats

and the Ugly

e The template engine does not know that it is actually a YAML file
e The template language is dumb, no knowledge about Kubernetes

e Hard to read and understand (parse go templates in your head + indentation hell)

Automated Helm Chart Testing with Bats

We are stuck with a flawed technology but with a thriving ecosystem

THE BUSINESS WATCHING ME DOING
GCOMPLEX EHEIHEERIHG I’llllllllﬂ'l'lllll FIX

i [
aME’FINIlINﬁ THAT El('l'llﬂ SPﬂl}E
“IN TIIE YAMLFILE AT LINE1811=

Automated Helm Chart Testing with Bats

Challenges for a Product Software Company

e Customer environments vary widely in configurations, infrastructure, and
dependencies

e Limited visibility into customer environments creates significant complexity in
diagnosing and resolving issues

e Version fragmentation across customer base increases support complexity
e Bug fixes in one version can introduce regressions in others

e Need to ensure compatibility and performance across diverse deployment
scenarios

e Balancing new feature development with maintenance of existing versions

Automated Helm Chart Testing with Bats

We need to test our Helm Charts!

e Systematically tests how different values.yaml affect deployed resources,
ensuring customization options work as expected

e Catches breaking changes early before they reach customer environments,
especially critical for customer-hosted deployments

e Tests run in CI/CD pipelines for continuous testing

 Distribution of charts to end-users requires confidence in their quality

Automated Helm Chart Testing with Bats

Testing using Bats

Bash Automated Testing System

Bats is a testing framework for Bash
Free and Open Source, been around for +10 years
Tests written in straightforward Bash syntax

Can be used for unit tests, integration tests, and
end-to-end tests

Can be used for testing almost anything that can be
run in a shell

TAP-compliant (Test Anything Protocol), JUnit XML,
and JSON output formats

Automated Helm Chart Testing with Bats

Bats Test Structure

e .bats files contain one or more @test blocks

Setup and teardown functions for environment management

e run command to execute commands and capture Output

Assertions for checking command status, output, and error messages

e load command to include helper functions

Mock functions for simulating external commands

Support for tags, pre/post hooks, and test filtering

All in bash syntax!

Automated Helm Chart Testing with Bats

Automated Helm Chart Testing with Bats

1 sOWKId N
Ime. Gickmoat Useabihne, hologa tewsili)))
ii1s Bal)
E}- ’ 21
B3t bew. Rowm 140

» P D= O DED
— =t)
e -
—

EH | sowez orexegti|)) 1
. B ! Isarf He awkrafmie BalLl)) 1)
. Ec § cw _poadenclaziobar)] Bl |
J g’
bolij i SL inldsetisege test pozl(])) oat
¢ ISLRIT 0093

E2= Bul(l))
fr=mr

teatsinedusa’ ()))
l-wf'} N lesratimg Bal (1))

o

inghil ros((]))

Ti
p2 ieani thotodisctiatale tooimptine L(1)
Foweipe7u modouripalT A les: tontensivvo (eéking testiing ced[(11])
bosi g5 211%e1 Bawr L 1sESI
1 2 L inaTh saT DS TA

“roo0oDo

n'owm o

L LT L

We want to test this script: greet.

#1/usr/bin/env bash
echo "Hello, $1!'"

Automated Helm Chart Testing with Bats

sh

Tests for greet.sh , using bats.

#1/usr/bin/env bats

@test "greet function" {
run bash greet.sh "Karlstad"
["$status" -eq 0]
["$output" = "Hello, Karlstad!"]

}

@test "greet function without name" {
run bash greet.sh
["$status" -eq 0]
["$output" = "Hello, !"]
b

Automated Helm Chart Testing with Bats

Running the tests:

Regular "pretty" output:

[stone@stout crash-coursel]$ bats test_greet.bats

v/ greet function
v/ greet function without name

2 tests, 0 failures

[stone@stout crash-coursel$ []

Junit output:

[stone@stout crash-course]$ bats -T -F junit test_greet.bats
<?xml version="1.0" encoding="UTF-8"7>

<testsuites time="0.010">
<testsuite name="test_greet.bats" tests="2" failures="0" errors="0" skipped="0" time="0.010" timestamp="2025-05-14T08:01:45" hostname="stout">

<testcase classname="test_greet.bats" name="greet function" time="0.005" />
<testcase classname="test_greet.bats" name="greet function without name" time="0.005" />

</testsuite>
</testsuites>

Automated Helm Chart Testing with Bats

Example 1 — Unit Testing Helm Templates

Verify the existence of a deployment template

#1/usr/bin/env bats

@test "Deployment: enabled by default" {
run helm template \
--namespace default \
--show-only templates/deployment.yaml \

["$étatus" -eq 0]
["$(echo "$output" | yg -r 'length > 0')" = "true"]

Automated Helm Chart Testing with Bats

Example 2 — Disabling a Deployment

Verify that the deployment is disabled when server.kind is setto DaemonSet

#1/usr/bin/env bats

@test "Deployment: can be disabled" {
run helm template \

--set 'server.kind=DaemonSet' \
--namespace default \

--show-only templates/deployment.yaml \

["$status" -ne 0] || ["$(echo "$output" | yqg -r 'length > 0')" = "false"]

Automated Helm Chart Testing with Bats

Example 3 — E2E Testing with Kubernetes

#!/usr/bin/env bats
load _helpers

setup_file() {
install_namespace
install_pull_secret
kubectl apply -f deployment-counting-service.yaml
kubectl apply -f service-counting-service.yaml
helm install varnish-enterprise
kubectl rollout status deployment varnish-enterprise --timeout=60s

}

@test "e0O1l: varnish-enterprise is deployable as a Deployment workload" {
run kubectl get deployment -1 app.kubernetes.io/name=varnish-enterprise -0 json
["$status" -eq 0]
["$(echo "$Soutput" | jg -r '.items | length')" -eq 1]

}

Automated Helm Chart Testing with Bats

Demo

Automated Helm Chart Testing with Bats

1/2 Pre-recorded backup slide if demo fails ;)

212 Pre-recorded backup slide if demo fails ;)

unt of r
a nodeIP and nodePort

varnish-enterprise
varnish-enterpri
varnish-enterprise

varnish-enterpr
arnish-enterpris
varnish-enterprise is accessible via nodelIP and nodePort

varnish-enterprise is deployable with external configmap
rnish-enterprise has an equal amount of replicas
varnish-enterprise is accessible via nodelP and nodePort

ish-enterprise i fith multi tenant configmap
i s an egual amount of replicas
rnish-enterpri : ibl IF and nodePort without
arnish-enterprise

1ish-enterpris ooy
arnish-enterpris jual amount of replicas
roish-enterpri is accessible a nodeIP and nodePort without tenant
nodeIP and modePort with temant

varnish-enterprise deployed with mse pvc
varnish-enterprise retain cache with mse after restart

epl with mse pvc via aut figuration
enterprise retain cache with mse af estart

varnish-enterprise deployed with msed pvc
e

varnish-enterprise retain cache with msed after restart

varnish-enterprise deployed with msed pvc via size autoconfiguration
varnish-enterpr = retain cache with msed after r

28 te , B fallures

[stone@stout e2els []

Best Practices

Structure Your Tests Logically

e Organize by chart component (deployment, service, configmap)
e Use consistent naming conventions for test files

e Group related tests within the same test file

Automated Helm Chart Testing with Bats

Best Practices

Create Helper Functions

e Build a library of reusable test helpers
e Abstract common operations like chart directory location

e Implement functions for template rendering and validation

Automated Helm Chart Testing with Bats

Best Practices

Validate Value Propagation

e Ensure values from values.yaml propagate correctly
e Test value overrides work as expected

e Verify default values are applied when not specified

Automated Helm Chart Testing with Bats

Best Practices

Simplify Commands

e Avoid complex command chains when possible
e Use built-in tools instead of custom workarounds
e Prefer direct assertions over intermediate variables

e For kubernetes / helm consider https://github.com/bats-core/bats-detik

Automated Helm Chart Testing with Bats

https://github.com/bats-core/bats-detik

Best Practices

e Use yq/ jq for YAML/JSON parsing

Clean up resources after tests

k3d for local Kubernetes testing

Constantly add new tests even for fixed bugs

Use CI/CD pipelines for automated Testing

e Run tests in Docker containers for isolation

Automated Helm Chart Testing with Bats

Alternatives

e Helm Chart tests - Helm's built-in testing framework
e terratest - A Go library for writing tests for infrastructure code

e Conftest - A tool for writing tests using Open Policy Agent (OPA) (Rego language)

Automated Helm Chart Testing with Bats

https://helm.sh/docs/topics/chart_tests/
https://terratest.gruntwork.io/
https://www.conftest.dev/

Summary

Bats makes Helm chart testing "easy" and scriptable

Bats tests are easy to read and maintain

Bats can be used for much more than just Helm charts

Supports both template and live cluster validation

Increases confidence and reduces production issues

Automated Helm Chart Testing with Bats

}

3
1)
{ lwarf H¢ aotrafmie BalL)))
c{ M _powicnctaciobay.) |
4 AL st {olssctisegs test ndal(]))
; Bl {())

ber teatsinediusal, ())) BATS

warm) N lestakimg Bal(l))
SEAL'
Tung T cBistiaotiob oLt , LLE 1)
ALY’

udigo teslimugts tast Visinghes. zos((1))

e Thank you for your attention! | e

ttetadicctiatale tooimoktinz L(1)
U modoucrisall A 1 tontensivuo (eikng testiing cetf(1l])
211321 Bait L 15

e Questions?

Automated Helm Chart Testing with Bats

Automated Helm Chart Testing with Bats

