
Automated Helm
Chart Testing with
Bats
Fredrik Steen

Fredrik Steen

Director of Software Engineering
Varnish Software

✉Mail: fredrik.steen@varnish-software.com

LinkedIn: fredriksteen
 GitHub: stone

 "Blog": https://tty.se/

Linux and open source user/developer since the mid 90s

Psy-trance DJ, Beekeeper, hydroponics,
electronics/homeautoumation geek

Automated Helm Chart Testing with Bats

mailto:fredrik.steen@varnish-software.com
https://linkedin.com/in/fredriksteen/
file:///foo/github.com/stone
https://tty.se/

Agenda Items
What is Helm and Helm Charts?

The Good, the Bad and the Ugly (Some ranting)

Challenges for a product software company

Why Test Helm Charts?

Testing Helm Charts

Bats Crash Course

Best Practices

Summary

Q&A

Automated Helm Chart Testing with Bats

What is Helm and Helm Charts?

Helm is a tool for managing Kubernetes applications. Helm uses a packaging
format called charts. Charts are collections of pre-configured Kubernetes

resources.

Helm is a package manager for Kubernetes

Helm charts are collections of files that describe a related set of Kubernetes
resources

Helm manages Kubernetes applications defined as charts

Charts can be versioned and shared

Charts are stored in chart repositories

Charts can be installed, upgraded, and deleted using Helm commands

Automated Helm Chart Testing with Bats

Example of using helm to install Varnish Cache

$ vim values.yaml
$ helm install myvarnish oci://registry-1.docker.io/varnish/varnish-cache
Pulled: registry-1.docker.io/varnish/varnish-cache:1.1.1
NAME: myvarnish
LAST DEPLOYED: Fri May 16 10:06:48 2025
STATUS: deployed
REVISION: 1
...

$ helm upgrade -f values.yaml myvarnish oci://registry-1.docker.io/varnish/varnish-cache
Release "myvarnish" has been upgraded. Happy Helming!
NAME: myvarnish
LAST DEPLOYED: Fri May 16 10:07:08 2025
STATUS: deployed
REVISION: 2
...

$ helm rollback myvarnish
$ helm uninstall myvarnish

Automated Helm Chart Testing with Bats

But is it really that good?

Automated Helm Chart Testing with Bats

Automated Helm Chart Testing with Bats

The Good

Package once, deploy anywhere: lets you wrap up a whole app with sensible
defaults.

Customizability (values.yaml): You get one file to rule them all. Change ports?
Image tags? TLS? It's all in there.

Rollback-friendly: Helm tracks releases like Git does commits. One bad

deployment? Just roll it back.

Ecosystem-rich: There's a chart for everything

Repository support: You can host your own chart repositories or use public ones.

Community support: Helm has a large and active community, making it easy to find
help and resources.

Automated Helm Chart Testing with Bats

The Bad

Template hell: Templates are written in Go's templating language, You end up
nesting curly braces like this:
{{- if .Values.service.enabled }} port: {{ .Values.service.port }} {{-

end }}

values.yaml becomes a jungle: As your chart grows, values.yaml becomes a

sprawling monster.

Want to change one thing, prepare to wade through 4 layers of defaults,

conditionals, and overrides.

Debugging a Helm chart is like trying to guess what your YAML will look like after
rendering.

Automated Helm Chart Testing with Bats

and the Ugly

The template engine does not know that it is actually a YAML file

The template language is dumb, no knowledge about Kubernetes

Hard to read and understand (parse go templates in your head + indentation hell)

Automated Helm Chart Testing with Bats

We are stuck with a flawed technology but with a thriving ecosystem

Automated Helm Chart Testing with Bats

Challenges for a Product Software Company

Customer environments vary widely in configurations, infrastructure, and

dependencies

Limited visibility into customer environments creates significant complexity in
diagnosing and resolving issues

Version fragmentation across customer base increases support complexity

Bug fixes in one version can introduce regressions in others

Need to ensure compatibility and performance across diverse deployment

scenarios

Balancing new feature development with maintenance of existing versions

Automated Helm Chart Testing with Bats

We need to test our Helm Charts!

Systematically tests how different values.yaml affect deployed resources,
ensuring customization options work as expected

Catches breaking changes early before they reach customer environments,

especially critical for customer-hosted deployments

Tests run in CI/CD pipelines for continuous testing

Distribution of charts to end-users requires confidence in their quality

Automated Helm Chart Testing with Bats

Testing using Bats

Bash Automated Testing System

Bats is a testing framework for Bash

Free and Open Source, been around for +10 years

Tests written in straightforward Bash syntax

Can be used for unit tests, integration tests, and

end-to-end tests

Can be used for testing almost anything that can be
run in a shell

TAP-compliant (Test Anything Protocol), JUnit XML,
and JSON output formats

Automated Helm Chart Testing with Bats

Bats Test Structure

.bats files contain one or more @test blocks

Setup and teardown functions for environment management

run command to execute commands and capture Output

Assertions for checking command status, output, and error messages

load command to include helper functions

Mock functions for simulating external commands

Support for tags, pre/post hooks, and test filtering

All in bash syntax!

Automated Helm Chart Testing with Bats

Bats Crash Course

Automated Helm Chart Testing with Bats

We want to test this script: greet.sh

#!/usr/bin/env bash
echo "Hello, $1!"

Automated Helm Chart Testing with Bats

Tests for greet.sh , using bats.

#!/usr/bin/env bats

@test "greet function" {
 run bash greet.sh "Karlstad"
 ["$status" -eq 0]
 ["$output" = "Hello, Karlstad!"]
}

@test "greet function without name" {
 run bash greet.sh
 ["$status" -eq 0]
 ["$output" = "Hello, !"]
}

Automated Helm Chart Testing with Bats

Running the tests:

Regular "pretty" output:

Junit output:

Automated Helm Chart Testing with Bats

Example 1 — Unit Testing Helm Templates

Verify the existence of a deployment template

#!/usr/bin/env bats

@test "Deployment: enabled by default" {
 run helm template \
 --namespace default \
 --show-only templates/deployment.yaml \
 .
 ["$status" -eq 0]
 ["$(echo "$output" | yq -r 'length > 0')" = "true"]
}

Automated Helm Chart Testing with Bats

Example 2 — Disabling a Deployment

Verify that the deployment is disabled when server.kind is set to DaemonSet

#!/usr/bin/env bats

@test "Deployment: can be disabled" {
 run helm template \
 --set 'server.kind=DaemonSet' \
 --namespace default \
 --show-only templates/deployment.yaml \
 .
 ["$status" -ne 0] || ["$(echo "$output" | yq -r 'length > 0')" = "false"]
}

Automated Helm Chart Testing with Bats

Example 3 — E2E Testing with Kubernetes

#!/usr/bin/env bats
load _helpers

setup_file() {
 install_namespace
 install_pull_secret
 kubectl apply -f deployment-counting-service.yaml
 kubectl apply -f service-counting-service.yaml
 helm install varnish-enterprise
 kubectl rollout status deployment varnish-enterprise --timeout=60s
}

@test "e001: varnish-enterprise is deployable as a Deployment workload" {
 run kubectl get deployment -l app.kubernetes.io/name=varnish-enterprise -o json
 ["$status" -eq 0]
 ["$(echo "$output" | jq -r '.items | length')" -eq 1]
}

Automated Helm Chart Testing with Bats

Demo

Automated Helm Chart Testing with Bats

1/2 Pre-recorded backup slide if demo fails ;)

0:00

2/2 Pre-recorded backup slide if demo fails ;)

Best Practices

Structure Your Tests Logically

Organize by chart component (deployment, service, configmap)

Use consistent naming conventions for test files

Group related tests within the same test file

Automated Helm Chart Testing with Bats

Best Practices

Create Helper Functions

Build a library of reusable test helpers

Abstract common operations like chart directory location

Implement functions for template rendering and validation

Automated Helm Chart Testing with Bats

Best Practices

Validate Value Propagation

Ensure values from values.yaml propagate correctly

Test value overrides work as expected

Verify default values are applied when not specified

Automated Helm Chart Testing with Bats

Best Practices

Simplify Commands

Avoid complex command chains when possible

Use built-in tools instead of custom workarounds

Prefer direct assertions over intermediate variables

For kubernetes / helm consider https://github.com/bats-core/bats-detik

Automated Helm Chart Testing with Bats

https://github.com/bats-core/bats-detik

Best Practices

Use yq / jq for YAML/JSON parsing

Clean up resources after tests

k3d for local Kubernetes testing

Constantly add new tests even for fixed bugs

Use CI/CD pipelines for automated Testing

Run tests in Docker containers for isolation

Automated Helm Chart Testing with Bats

Alternatives

Helm Chart tests - Helm's built-in testing framework

terratest - A Go library for writing tests for infrastructure code

Conftest - A tool for writing tests using Open Policy Agent (OPA) (Rego language)

Automated Helm Chart Testing with Bats

https://helm.sh/docs/topics/chart_tests/
https://terratest.gruntwork.io/
https://www.conftest.dev/

Summary

Bats makes Helm chart testing "easy" and scriptable

Bats tests are easy to read and maintain

Bats can be used for much more than just Helm charts

Supports both template and live cluster validation

Increases confidence and reduces production issues

Automated Helm Chart Testing with Bats

Q&A

Thank you for your attention!

Questions?

Automated Helm Chart Testing with Bats

Automated Helm Chart Testing with Bats

