
Breaking Bad
Containers
Practical steps to secure your
Container, Kubernetes workloads

Fredrik Steen

Fredrik Steen $> whoami

Director of Software Engineering
Varnish Software

Mail: fredrik.steen@varnish-software.com

LinkedIn: fredriksteen
 GitHub: stone

 "Blog": https://tty.se/

Linux and Open Source user/developer since the mid 90s,

Psytrance-DJ, Beekeeper, Electronics, Microbiology and Beer
enthusiast. 

Breaking Bad Containers - Container Security

mailto:fredrik.steen@varnish-software.com
https://linkedin.com/in/fredriksteen/
file:///foo/github.com/stone
https://tty.se/

Containers and Current Threats

Breaking Bad Containers - Container Security

Of 6,292 images from 1,573 repos, ~61% had

vulnerabilities in every tag (ICSME 2025)

Significant portion built on outdated base images
(Haque & Babar, 2021)

87% of production images still contain high or
critical vulnerabilities (Sysdig 2024)

Breaking Bad Containers - Container Security

Attack windows are shrinking to mere minutes
Attack windows are shrinking to mere minutes

AKS clusters face probing attempts within 18 minutes of deployment

EKS clusters are targeted within 28 minutes.

Breaking Bad Containers - Container Security

Supply chain attacks are rising sharply
2025-09-08: Hijacked 18 npm packages with 2B weekly downloads, planting

malware to steal crypto by redirecting wallet transactions.

16,279 malicious packages discovered across npm, PyPI, Maven Central in
Q2 2025 (Sonatype)

The recent XZ Utils backdoor (CVE-2024-3094) demonstrated how "close" the
entire Linux ecosystem came to widespread compromise.

Breaking Bad Containers - Container Security

(CVE-2025-1097, CVE-2025-1098..)(CVE-2025-1097, CVE-2025-1098..)

Disclosed in March 2025 affected vulnerable (nginx) admission controllers.Disclosed in March 2025 affected vulnerable (nginx) admission controllers.

The most critical flaw allowed unauthenticated remote code execution (RCE)The most critical flaw allowed unauthenticated remote code execution (RCE)

leading to leading to complete cluster takeovercomplete cluster takeover , demonstrating how core Kubernetes, demonstrating how core Kubernetes
components can become critical attack vectors.components can become critical attack vectors.

This demands action and
practical security
implementations.

With some simple steps, you can

significantly improve the security of
your cluster and containerized

applications.

Breaking Bad Containers - Container Security

It all start with a... Dockerfile

Breaking Bad Containers - Container Security

A simple Dockerfile

FROM ubuntu:latest
RUN apt-get update && apt-get install -y golang ca-certificates
USER root
WORKDIR /app
COPY . /app
RUN go build -o /app/app
ENTRYPOINT ["/app/app"]
EXPOSE 80

Let's analyze this simple Dockerfile...

Breaking Bad Containers - Container Security

A simple Dockerfile - what's wrong with it?

This simple Dockerfile illustrates common pitfalls:

Unpinned builds (:latest) they change; CVE surface shifts daily.

Running as root inside the container (CVE-2024-21626: container

escape).

COPY Pulls in everything from . (git history, tests, secrets..)

Large Attack surface (unnecessary tools in final image).

Ubuntu is a fat runtime, You can ship a Go app as a single binary.

Breaking Bad Containers - Container Security

Setuid root binaries - a classic privilege escalation vector

Mount host /tmp into container
docker run -it --rm -v /tmp:/host-tmp ubuntu:24.04 bash

Inside container as root:
cp /bin/bash /host-tmp/evil-bash
chmod 4755 /host-tmp/evil-bash # Set setuid bit

Exit container, then on host as regular user:
/tmp/evil-bash -p # Now you have root shell on host!

Breaking Bad Containers - Container Security

How to build secure container images (1/2)

FROM ubuntu:24.04 AS builder
ARG TARGETOS=linux
ARG TARGETARCH=amd64
ENV DEBIAN_FRONTEND=noninteractive
WORKDIR /src
COPY . /src
RUN set -eux; \
 apt-get update; \
 apt-get install -y --no-install-recommends ca-certificates golang; \
 rm -rf /var/lib/apt/lists/*; \
 CGO_ENABLED=0 GOOS=$TARGETOS GOARCH=$TARGETARCH go build -trimpath -ldflags="-s -w" -o /src/app

FROM gcr.io/distroless/static:nonroot AS runtime
WORKDIR /app
COPY --from=builder --chown=nonroot:nonroot /src/app /app/app
COPY --from=builder /etc/ssl/certs/ca-certificates.crt /etc/ssl/certs/
USER nonroot:nonroot
EXPOSE 8080/tcp
ENTRYPOINT ["/app/app"]

Breaking Bad Containers - Container Security

How to build secure container images (2/2)

Use a specific, up-to-date base image, ensure known CVE status

Switch to a non-root user to limit privileges

Use multi-stage builds, keep runtime clean

Minimized attack surface: no shell, no package manager, only your
binary (if possible)

Use a .dockerignore file to exclude files (e.g., .git , .env , *.key ,
id_rsa*)

Our example became a 7.7 MB final image where 5.1 MB is our static

Go binary

Breaking Bad Containers - Container Security

Know your vulnerabilities - Trivy

Trivy has emerged as the de facto standard for container vulnerability scanning

$ docker run --rm -v /tmp/cache:/root/.cache/ aquasec/trivy:0.65.0 image python:2 --severity CRITICAL
$ trivy image $(docker ps --format "table {{.Image}}" | tail -n +2)
$ trivy k8s --include-namespaces kube-system --report summary

Trivy scans for OS and language-specific vulnerabilities, misconfigurations,

secrets, and generates SBOMs

Integrates with CI/CD pipelines for automated scanning on build and deploy

Use Trivy's severity filtering to prioritize remediation efforts on critical vulnerabilities

Breaking Bad Containers - Container Security

Trivy Scan of Trivy Scan of node:latestnode:latest (2025-09-01) (2025-09-01)

Immediate action plan for
security improvement

(Yes, going nuts with ai generated

images..)

Breaking Bad Containers - Container Security

Kubernetes

Mature ecosystem with many security tools and best

practices available to make your container workloads
secure.

How?

Breaking Bad Containers - Container Security

Level 1 - focus on foundational controls.

Enable Pod Security Standards at the Restricted level
Privileged, Baseline, Restricted 

Deploy Falco for runtime monitoring (kernel-level syscall inspection)

Implement default-deny network policies.

Secure your cluster (API) access using firewall/VPN and use strong auth.

This will provide immediate protection against common attack vectors.

And insigts

Breaking Bad Containers - Container Security

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://falco.org/

Level 2 - Enhanced security with policy enforcement

Admission control policies using OPA Gatekeeper

More flexible - Custom policies beyond standard security profiles

Cluster-wide enforcement - Not just namespace-level

Policy as Code - Version controlled, reviewable policies

Mandatory image scanning and signing workflows of images (Cosign/Trivy)

Least-privilege RBAC implementation.

A bit more effort, but will significantly enhance the security posture by enforcing

security.

Breaking Bad Containers - Container Security

Boss Level - Security excellence with SLSA Level 2+ compliance

Zero-trust network architecture (e.g., service mesh with mTLS)

Advanced threat detection and automated response capabilities (e.g., Falco +
SOAR)

Comprehensive supply chain security attestation

Train teams on security best practices and incident response

Regular security audits and penetration testing

Exccellent security, but requires significant organizational commitment and resources.

Breaking Bad Containers - Container Security

In cybersecurity, you don't have to outrun the bear, you just have to be fasterIn cybersecurity, you don't have to outrun the bear, you just have to be faster
then the person next to you.then the person next to you.

Kubernetes
Examples of how to harden your workloads

Breaking Bad Containers - Container Security

Admission control with OPA Gatekeeper

apiVersion: constraints.gatekeeper.sh/v1beta1
kind: K8sAllowedRepos
spec:
 parameters:
 repos:
 - "registry.company.com/"

Enforce image policy on pod spec at admission time

This example will block images from untrusted registries

Breaking Bad Containers - Container Security

PodSecurity Standards

kind: Namespace
metadata:
 name: my-namespace
 labels:
 pod-security.kubernetes.io/enforce: restricted
 pod-security.kubernetes.io/audit: restricted
 pod-security.kubernetes.io/warn: restricted

Kubernetes built-in policies, set levels of security restrictions for Pods.

API server will reject Pod creation/updates that violate the defined profile.

Breaking Bad Containers - Container Security

Pod securityContext - restricted policy

securityContext:
 runAsNonRoot: true
 allowPrivilegeEscalation: false
 readOnlyRootFilesystem: true
 capabilities:
 drop: ["ALL"]

No root Containers

No privilege escalation

Read-only filesystem

Drop all capabilities

Breaking Bad Containers - Container Security

Network Policies - deny by default

kind: NetworkPolicy
spec:
 podSelector: {}
 policyTypes: ["Ingress","Egress"]
 ingress:
 - from:
 - podSelector: { matchLabels: { role: "backend" } }

Default deny all ingress and egress traffic

Explicitly allow traffic only from/to trusted pods or namespaces

Breaking Bad Containers - Container Security

What about regular ol-Docker?

Capability dropping and no-new-privileges
docker run --cap-drop=ALL --user 1000:1000 myapp:1.2.3
docker run --security-opt no-new-privileges myapp:1.2.3
Network isolation
docker network create --internal restricted-net
docker run --network=restricted-net myapp

Breaking Bad Containers - Container Security

Q&A

Thank you for your attention!

Questions?

Breaking Bad Containers - Container Security

Breaking Bad Containers - Container Security

