Breaking Bad EAKING

Containers BAJD containers

Practical steps to secure your
Container, Kubernetes workloads

Fredrik Steen

Fredrik Steen $> whoami

Director of Software Engineering
Varnish Software

Mail: fredrik.steen@varnish-software.com
BLinkedIn: fredriksteen
) GitHub: stone

"Blog": https://tty.se/

Linux and Open Source user/developer since the mid 90s,
Psytrance-DJ, Beekeeper, Electronics, Microbiology and Beer
enthusiast. [P

Breaking Bad Containers - Container Security

mailto:fredrik.steen@varnish-software.com
https://linkedin.com/in/fredriksteen/
file:///foo/github.com/stone
https://tty.se/

Containers and Current Threats

Breaking Bad Containers - Container Security

e Of 6,292 images from 1,573 repos, ~61% had
vulnerabilities in every tag (ICSME 2025)

e Significant portion built on outdated base images
(Haque & Babar, 2021)

e 87% of production images still contain high or
critical vulnerabilities (Sysdig 2024)

Breaking Bad Containers - Container Security

Attack windows are shrinking to mere minutes

Attack windows are shrinking to mere minutes

e AKS clusters face probing attempts within 18 minutes of deployment

e EKS clusters are targeted within 28 minutes.

Breaking Bad Containers - Container Security

Supply chain attacks are rising sharply

e 2025-09-08: Hijacked 18 npm packages with 2B weekly downloads, planting
malware to steal crypto by redirecting wallet transactions.

e 16,279 malicious packages discovered across npm, PyPIl, Maven Central in
Q2 2025 (Sonatype)

e The recent XZ Utils backdoor (CVE-2024-3094) demonstrated how "close" the
entire Linux ecosystem came to widespread compromise.

Breaking Bad Containers - Container Security

(CVE-2025-1097, CVE-2025-1098..)

Disclosed in March 2025 affected vulfjerable (nginx) admission controllers.

The most critical flaw allowed ur} ed remote code execution (RCE)

t*?nelmix
leading to complete cluster takEaVET AEMANstrating how core Kubernetes
components can peEcamegritical attack vectors.

This demands action and
practical security EAKING
implementations. BAD containers

With some simple steps, you can
significantly improve the security of
your cluster and containerized

N

applications. n

Breaking Bad Containers - Container Security

It all start with a... Dockerfile

Breaking Bad Containers - Container Security

A simple Dockerfile

FROM ubuntu:latest

RUN apt-get update && apt-get install -y golang ca-certificates
USER root

WORKDIR /app

COPY . /app

RUN go build -o /app/app

ENTRYPOINT ["/app/app"]

EXPOSE 80

Let's analyze this simple Dockerfile...

Breaking Bad Containers - Container Security

A simple Dockerfile - what's wrong with it?

This simple Dockerfile illustrates common pitfalls:

e Unpinned builds (:1atest) they change; CVE surface shifts daily.

e Running as root Iinside the container (CVE-2024-21626: container
escape).

e corpy Pulls in everything from . (git history, tests, secrets..)

Large Attack surface (unnecessary tools in final image).

e Ubuntu is a fat runtime, You can ship a Go app as a single binary.

Breaking Bad Containers - Container Security

Setuid root binaries - a classic privilege escalation vector

Mount host /tmp into container
docker run -it --rm -v /tmp:/host-tmp ubuntu:24.04 bash

Inside container as root:
cp /bin/bash /host-tmp/evil-bash
chmod 4755 /host-tmp/evil-bash # Set setuid bit

Exit container, then on host as regular user:
/tmp/evil-bash -p # Now you have root shell on host!

Breaking Bad Containers - Container Security

How to build secure container images (1/2)

FROM ubuntu:24.04 AS builder
ARG TARGETOS=1linux
ARG TARGETARCH=amd64
ENV DEBIAN_FRONTEND=noninteractive
WORKDIR /src
COPY . /src
RUN set -eux; \
apt-get update; \
apt-get install -y --no-install-recommends ca-certificates golang; \
rm -rf /var/lib/apt/lists/*; \
CGO_ENABLED=0 GOOS=3$TARGETOS GOARCH=$TARGETARCH go build -trimpath -ldflags="-s -w" -0 /src/app

FROM gcr.io/distroless/static:nonroot AS runtime

WORKDIR /app

COPY --from=builder --chown=nonroot:nonroot /src/app /app/app

COPY --from=builder /etc/ssl/certs/ca-certificates.crt /etc/ssl/certs/
USER nonroot:nonroot

EXPOSE 8080/tcp

ENTRYPOINT ["/app/app"]

Breaking Bad Containers - Container Security

How to build secure container images (2/2)

e Use a specific, up-to-date base image, ensure known CVE status
e Switch to a non-root user to limit privileges
e Use multi-stage builds, keep runtime clean

e Minimized attack surface: no shell, no package manager, only your
binary (if possible)

e Use a .dockerignore file to exclude files (e.g., .git, .env, *.key,
id_rsa*)

e Our example became a 7.7 MB final image where 5.1 MB Is our static
Go binary

Breaking Bad Containers - Container Security

Know your vulnerabilities - Trivy

Trivy has emerged as the de facto standard for container vulnerability scanning

$ docker run --rm -v /tmp/cache:/root/.cache/ aquasec/trivy:0.65.0 image python:2 --severity CRITICAL
$ trivy image $(docker ps --format "table {{.Image}}" | tail -n +2)
$ trivy k8s --include-namespaces kube-system --report summary

e Trivy scans for OS and language-specific vulnerabilities, misconfigurations,
secrets, and generates SBOMs

e Integrates with CI/CD pipelines for automated scanning on build and deploy

e Use Trivy's severity filtering to prioritize remediation efforts on critical vulnerabilities

Breaking Bad Containers - Container Security

ode:latest (debian 12.11)

otal: 26 (CRITICAL: 26)

Library Vulnerability Severity Status Installed Version Fixed Version Title

imagemagick CVE-2025-53014 affected 8:6.9.11.60+dfsg-1.6+deb12u3 ImageMagick: ImageMagick Heap Buffer Overflow

imagemagick-6-common

imagemagick-6.q16

libaom3 CVE-2023-6879 3.6.0-1+deb12ul aom: heap-buffer-overflow on frame size change

libmagickcore-6-arch-config | CVE-2025-53014 8:6.9.11.60+dfsg-1.6+deb12u3 ImageMagick: ImageMagick Heap Buffer Overflow

libmagickcore-6-headers

libmagickcore-6.q16-6

libmagickcore-6.q16-6-extra

Libnagickcore-s.qto-dev ' f node:latest (2025-09-01)

libmagickcore-dev

libmagickwand-6-headers

libmagickwand-6.ql16-6

libmagickwand-6.ql6-dev

libmagickwand-dev

libopenexr-3-1-30 CVE-2023-5841 OpenEXR: Heap Overflow in Scanline Deep Data Parsing

libopenexr-dev

libsqlite3-0 CVE-2025-6965 3.40.1-2+debl2ul sqlite: Integer Truncation in SQLite

CVE-2025-7458 sqlite: SQLite integer overflow

libsqlite3-dev CVE-2025-6965 sqlite: Integer Truncation in SQLite

Immediate action plan for
security improvement

(Yes, going nuts with ai generated
Images..)

Breaking Bad Containers - Container Security

Kubernetes KUBERNETES

Mature ecosystem with many security tools and best
practices available to make your container workloads
secure.

How? ~ KUBERNETESEVERYWHERE

Breaking Bad Containers - Container Security

Level 1 - focus on foundational controls.

e Enable Pod Security Standards at the Restricted level
o Privileged, Baseline, Restricted W

e Deploy Falco for runtime monitoring (kernel-level syscall inspection)
e Implement default-deny network policies.

e Secure your cluster (API) access using firewall/VPN and use strong auth.
This will provide immediate protection against common attack vectors.

And insigts

Breaking Bad Containers - Container Security

https://kubernetes.io/docs/concepts/security/pod-security-standards/
https://falco.org/

Level 2 - Enhanced security with policy enforcement

e Admission control policies using OPA Gatekeeper
o More flexible - Custom policies beyond standard security profiles

o Cluster-wide enforcement - Not just namespace-level

o Policy as Code - Version controlled, reviewable policies
e Mandatory image scanning and signing workflows of images (Cosign/Trivy)
e Least-privilege RBAC implementation.

A bit more effort, but will significantly enhance the security posture by enforcing
security.

Breaking Bad Containers - Container Security

Boss Level - Security excellence with SLSA Level 2+ compliance

e Zero-trust network architecture (e.g., service mesh with mTLS)

e Advanced threat detection and automated response capabilities (e.g., Falco +
SOAR)

o Comprehensive supply chain security attestation

Train teams on security best practices and incident response

Regular security audits and penetration testing

Exccellent security, but requires significant organizational commitment and resources.

Breaking Bad Containers - Container Security

Y the bear, you ju_st"'“ : u’i -

‘ h*EXt yow =

Kubernetes

Examples of how to harden your workloads

Breaking Bad Containers - Container Security

Admission control with OPA Gatekeeper

apiVersion: constraints.gatekeeper.sh/vlbetal
kind: K8sAllowedRepos
spec:
parameters:
repos:
- "registry.company.com/"

e Enforce image policy on pod spec at admission time

e This example will block images from untrusted registries

Breaking Bad Containers - Container Security

PodSecurity Standards

kind: Namespace
metadata:
name: my-namespace
labels:
pod-security.kubernetes.io/enforce: restricted
pod-security.kubernetes.io/audit: restricted
pod-security.kubernetes.io0/warn: restricted

o Kubernetes built-in policies, set levels of security restrictions for Pods.

e API server will reject Pod creation/updates that violate the defined profile.

Breaking Bad Containers - Container Security

Pod securityContext - restricted policy

securityContext:
runAsNonRoot: true
allowPrivilegeEscalation: false
readOnlyRootFilesystem: true
capabilities:
drop: ["ALL"]

e No root Containers

No privilege escalation

Read-only filesystem

Drop all capabilities

Breaking Bad Containers - Container Security

Network Policies - deny by default

kind: NetworkPolicy
spec:
podSelector: {}
policyTypes: ["Ingress", "Egress'"]
ingress:
- from:
- podSelector: { matchLabels: { role: "backend" } }

e Default deny all ingress and egress traffic

e Explicitly allow traffic only from/to trusted pods or namespaces

Breaking Bad Containers - Container Security

What about regular ol-Docker?

Capability dropping and no-new-privileges

docker run --cap-drop=ALL --user 1000:1000 myapp:1.2.3
docker run --security-opt no-new-privileges myapp:1.2.3
Network isolation

docker network create --internal restricted-net

docker run --network=restricted-net myapp

Breaking Bad Containers - Container Security

BREAKING

0&A " AD containers

e Thank you for your attention!

e Questions?

Breaking Bad Containers - Container Security

Breaking Bad Containers - Container Security

